
IJSER © 2016
http://www.ijser.org

Parallel Computing with ParaComputeD Server
Vishal Singh, Sifat Shaikh, Urvi Chawla

Abstract— The purpose of this project is to reduce the time required for processing and execution of a program by developing a framework

that will basically delegate the work to various servers best suited for that particular task. We propose a framework that will reduce the pro-

cessing time basically by the principle of parallel computing by using the concept of “Job Delegation”. This framework is bas ically a job del-

egation server which will delegate the work to available node/workers. This allows for non-blocking parallel processing.

Index Terms—Parallel Computing, ParaComputeD, Job delegation server, Load Balancing, Bandwidth, Constant polling, Workers.

—————————— ——————————

1 INTRODUCTION

ARALLEL computing is a form of computation in which
many calculations are carried out simultaneously, operat-
ing on the principle that large problems can often be di-

vided into smaller ones, which are then solved at the same
time.

In the existing system, as shown in the diagram (fig. 1.1.)
below of a typical form submission example, we can see that
each step has to wait for the previous step to be completed.
And the user has to wait till all the processes are completed.

 Fig. 1.1: Typical Form Submission Example

In the above example as you can see al the process are being

done in separate steps but not simultaneously. Thus, the pro-
cesses have to wait for the previous process to be completed for
its execution to be started. Hence the time required for comple-
tion of the whole task sums up the time required for each indi-
vidual process. This results in increasing the overall processing
time. The proposed system avoids this issue by simultaneously

processing the separate processes, thus, considerably reducing
the processing time.

In parallel computing, a computational task is typically bro-
ken down in several, often many, very similar subtasks that can
be processed independently and whose results are combined
afterwards, upon completion.

2 THE EXISTING SYSTEM

In order to have an efficient web application, it should have
more reliable and robust code, proper security, intelligent
routing mechanism for quick response and zero downtime
during upgrade process.
 In the present system, a queuing system which is a generic
model that comprises of three elements:
A user source, a queue and a service facility that contains one
or more identical servers in parallel. Each user of the queueing
systempasses through the queue where he may remain for a
period of time and then is processed by a single server because
of the parallel arrangement of servers. Once a user has left the
server, after obtaining the service, the user is considered to
have left the queue using system as well.

A queuing system is formed from three generic elements:
1. The arrival process of users in the system;
2. The order in which the users obtain access to the service

facility, once they join the queue;
3. The service process.

The present system on which parallel computing is based is

noraml queues. These queues used have many problems. Most
of them can be resolved by proposed framework.

The major problems are : Problem of waiting, Constant
polling, Balancing of load.

In case of queues which are dependent on others to obtain

necessary information or data in order to pack it into a single
entity or component. The queue which needs to obtain the
desired information constantly needs to poll the other queue

P

1.Verify input

 (1 ms)

2.Upload/Process

Image

 (100ms)

3.Process Video

 (1 min)

4. Send Success

Mail

 (10 secs)

5. Show Success

 (1 ms)

International Journal of Scientific & Engineering Research, Volume 7, Issue 2,February-2016
ISSN 2229-5518 29

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume ƛȮɯ(ÚÚÜÌɯƖȮɯ%ÌÉÙÜÈÙàɪƖƔƕƚ
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

 Fig 2.1 : Queuing System

.
This leads to a wastage of bandwidth which in turn blocks

the channel and reduces throughput. Also the processes need
to constantly poll the queues to check for availability of work.

Finally arises the major problem of balancing of load. In the
present system all the workload is put into the queue which is
closest to that particular server. Server basically keeps pushing
the entire load into the nearest queue. This makes that particu-
lar queue full and the process overloaded. This in turn affects
the overall processing and can lead to a system crash.

3 PROPOSED SYSTEM

We have proposed a ParaComputeD Server as the solution to
the proposed problem of the current parallel processing sys-
tem. ParaComputeD is a job delegation server. It is built for
Robust messaging between applications. It has built-in sup-
port for load-balancing and fault tolerance. It can be used to
build distributed applications that scale right from the start
and build applications that have no single point of failure as
well as decouple your program into components written in
languages best suited for the task.

This framework resolves the problem of witing by allocat-
ing the desired task to desired process at the desired time, re-
sulting in no queue and process overloading. This is very es-
sential as else it leads to unnecessary delays and wastage of
resources of computation.

Constant polling is another issue which is overcome by us-
ing this framework. This framework allocates the workload to
the respective queues as and when the work arises. This en-
sures that efficiency of usuage of bandwidth is maintained.
Thus, the need of a process to constantly poll an queue is elim-
inated.

The most important issue that is resolved by the Para-
ComputeD framework is the issue of balancing of load.This
balancing of load is basically the division of the entire work-
load, to all the processes and queues that exist to help the sys-
tem function. Thus, all the processes irrespecctive of their loca-
tion and distance from the main server are alloted work de-
pending on the workload.

ParaComputeD is built to solve the problem of existing
queuing softwares which were either proprietary or bulky or
slow. The present scenario desires something fast, lightweight
and well documented, which would be as reliable & robust as
any enterprise software.

Another goal of ParaComputeD is to keep things simple.
ParaComputeD uses a simple protocol based on websockets.
This makes it as easy to connect as a HTTP service and yet
have speeds similar to a raw TCP channel.

Users

Arrival at

the system Server 1

Server n

service

Queue Service Facility

Departure from the

system

30

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume ƛȮɯ(ÚÚÜÌɯƖȮɯ%ÌÉÙÜÈÙàɪƖƔƕƚ
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

3.1 Polling issues

The system uses a Wake UP, Sleep algorith to reduce con-

stant polling of the queue. This increases the bandwidth
usuage efficiency of the system as unwanted polling is re-
duced. The wake up and sleep algorithms are as follows:

AWAKE_MODE:
1. Request for job.
2. If no job go to SLEEP_MODE.
3. Process the job.
4. Go to step 1.

SLEEP_MODE:
1. Listen to Socket
- If job == AVLB go to AWAKE_MODE.

3.2 System Architecture

 Fig. 3.2.1: System Architecture of ParaComputeD

The above diagram represents the overall system architec-
ture of ParaComputeD. ParaComputeD treats tasks as mes-
sages wrapped in Json format. These messages are sent over
web sockets which is used as the protocol. When a message is
received by ParaComputeD, it decodes it and pushes it inside
an internal queue. These queues are named with respect to the
workers actions. On the other end, workers are connected to
ParaComputeD. These too connect using websocket protocol.
The information exchange format is Json. When a worker re-
quests for a job, the ParaComputeD server pops a task from
the queue and sends it to the worker that requested it. After
the task is complete, the worker sends an acknowledgement
back to the ParaComputeD server. THis completes the process
for one task. ParaComputeD is built to dispatch and load bal-

ance hundreds to thousands of such jobs per minute, making
it very efficient at parallel computation. ParaComputeD is also
capable of delayed task and also capable of expiring a task
after certain interval of time.

For expiring a task, it can stored with the expiry date and
time for the task. So the task would get expired after the date
and time passes. An apllication can be completed by doin var-
ious tasks. Let us take an example of booking a ticket. After
the ticket has been booked, let us assume we get an emiled
with an attached pdf of the ticket. Thus in this case we have
two tasks to be completed. First we have to make a pdf and
the send the mail attaching the pdf to it. So the ParaCompue D
server would send the two different tasks to two different
workers. thus mail would be generated by a different worker
and the pdf by a different worker. Thus completing the tasks
simultaneously. Also different processes are created for differ-
ent clients. this way clients need not wait and thus reducing
the processing time.

Let us assume clients need to publish or subscribe some-
thing from the queue. The for different clients the Para-
ComputeD would create different processes, so that cdifferent
clients can do their tasks simultaneously. Subscribe can be to
pop anything from the queue and publish can be used to push
anything to the queue.

The algorithms that can be used to publish and subscribe
from the queue are:

Publish

{
"cmd":"PUB",
"qname":"$Q_NAME",
"message":"$message",
"delay":0,
"expires":0,
"priority":0
}

Here, if the command is publish, the message gets pushed

to the queue named Q_NAME. We can also set the exipry,
delay , and priority for the message.

Subscribe

{
"cmd":"SUB",
"qname":"$Q_name"
}

This algorithm is used to pop something from the queue

named Q_NAME.

The following steps can be included in a queue processing:
1. Client request to subscribe or publish from the queue.
2.Process (P1) gets created for the request made by client in

the first step.
3.The process (P1) gets terminated after the event or the re-

quest is completed.

Application N

Task 1 Task 2 Task 3 Task N

ParaComputeD Server

Worker 1 Worker 2 Worker N

31

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume ƛȮɯ(ÚÚÜÌɯƖȮɯ%ÌÉÙÜÈÙàɪƖƔƕƚ
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

4.New processes are created everytime a new event or cli-
ent request is being made. Two events or client requests can
also be made simultaneously. In that case two different pro-
cesses (P1 and P2) would be made for the two different re-
quests or events.

4 EXAMPLE

We have seen the typical form submission example in the

introduction. That was the case in present processing system.
In typical form submission each process is completed one by
one in a sequential order. Thus the time required for comple-
tion of the whole process just adds up. But the ParaComputeD
server proposed by us would reduce the processing time by
processing various jobs simultaneously.

Fig. 4.1: ParaComputeD Form Submission

Here, in case of using ParaComputeD we reduce the pro-

cessing time by simultaneously processing the image, video
and sending mail. Also these processes can be done on differ-
ent workers. These workers can be running different lan-
guages. Hence each process can be given to the worker best
suited for the job. Thus, in the above example we have pro-
cessing image in apython worker, video in a java worker and
sending mail in a PHP worker. This ensures best processing as
each worker does the job it is best at and the jobs are alotted to
the worker best at it.

5 CONCLUSION

ParaComputeD is a job delegation server which is used

farm out work to other machines or processes that are better
suited to do the job. It allows you to do work in parallel, to
load balance processing and to call function between lan-
guages. THere are a number of ways ParaComputeD can be
useful. The simplest answer is that you can use ParaComput-
eD as an interface between a client and a worker written in
different languages. You can mix and match any of the sup-
ported language interfaces easily; you just need all the appli-
cations to be able to understand the workload being sent.

The other way that ParaComputeD can be useful is to put
the worker code on a separate machine (or cluster of ma-
chines) that is better suited to do the work. Say your PHP web
application wants to do image conversion, but this is too much
processing to run it on the web server machines. You could
instead ship the image off to a separate set of worker machines
to do conversion, this way the load does not impact the per-
formance of your web server and other PHP scripts. By doing
this, you also get a natural form of load balancing since Para-
ComputeD only sends new jobs to idle workers. If all the
workers running on a given machine are busy, you don't need
to worry about new jobs being sent there. This makes scale-out
with multi-core servers quite simple: do you have 16 crores on
a worker machine? Start up 16 Instances of your worker. It is
also seemless to add new machines to expand your worker
pool, just boot them up, install the worker code, and have
them connect to the existing ParaComputeD.

You are able to run multiple job servers and have the clients
and workers connect to a single ParaComputeD.

By using this framework you can scale out your clients and
workers as needed. The Daemon can easily handle hundreds
of clients and workers connected at once. you can draw your
own physical (or virtual) machine lines where capacity allows,
potentially distributing load to any number of machines.

Although a conclusion may review the main points of the pa-

per, do not replicate the abstract as the conclusion. A conclu-

sion might elaborate on the importance of the work or suggest

applications and extensions. Authors are strongly encouraged

not to call out multiple figures or tables in the conclusion—

these should be referenced in the body of the paper.

REFERENCES

[1] Felician ALECU, "Queuing Systems and Parallel Processing", Economy In-

formatics, IEEE Transactions on 2003

[2] Parallel Computing:

https://en.wikipedia.org/ wiki/Parallel_computing

[3] Erlang:

http://www.erlang.org/

[4] Erlang:

https://en.wikipedia.org/wiki/Erlang_(programming_language)

[5] Jonathan Weinberg, "Job Scheduling on Parallel Systems", University

of Califrnia, San Diego.

1. Verify Input

2.Upload/Process

Image

3. Process Video

4.Send Success

Mail

5.Show Success

 PCD

Process Image

(Python Work-

er)

Process Video

(Java Worker)

Send Mail

(PHP Worker)

32

IJSER

http://www.ijser.org/

